Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum.
نویسندگان
چکیده
Previous studies have identified sensitive periods for the developing barn owl during which visual experience has a powerful influence on the calibration of sound localization behavior. Here we investigated neural correlates of these sensitive periods by assessing developmental changes in the capacity of visual experience to alter the map of auditory space in the optic tectum of the barn owl. We used two manipulations. (1) We equipped owls with prismatic spectacles that optically displaced the visual field by 23 degrees to the left or right, and (2) we restored normal vision to prism-reared owls that had been raised wearing prisms. In agreement with previous behavioral experiments, we found that the capacity of abnormal visual experience to shift the tectal auditory space map was restricted to an early sensitive period. However, this period extended until later in life (approximately 200 d) than described previously in behavioral studies (approximately 70 d). Furthermore, unlike the previous behavioral studies that found that the capacity to recover normal sound localization after restoration of normal vision was lost at approximately 200 d of age, we found that the capacity to recover a normal auditory space map was never lost. Finally, we were able to reconcile the behaviorally and neurophysiologically defined sensitive periods by taking into account differences in the richness of the environment in the two sets of experiments. We repeated the behavioral experiments and found that when owls were housed in a rich environment, the capacity to adjust sound localization away from normal extended to later in life, whereas the capacity to recover to normal was never lost. Conversely, when owls were housed in an impoverished environment, the capacity to recover a normal auditory space map was restricted to a period ending at approximately 200 d of age. The results demonstrate that the timing and even the existence of sensitive periods for plasticity of a neural circuit and associated behavior can depend on multiple factors, including (1) the nature of the adjustment demanded of the system and (2) the richness of the sensory and social environment in which the plasticity is studied.
منابع مشابه
A topographic instructive signal guides the adjustment of the auditory space map in the optic tectum.
Maps of auditory space in the midbrain of the barn owl (Tyto alba) are calibrated by visual experience. When owls are raised wearing prismatic spectacles that displace the visual field in azimuth, the auditory receptive fields of neurons in the optic tectum shift to compensate for the optical displacement of the visual field. This shift results primarily from a shift in the tuning of tectal neu...
متن کاملA candidate pathway for a visual instructional signal to the barn owl's auditory system.
Many organisms use multimodal maps to generate coherent neuronal representations that allow adequate responses to stimuli that excite several sensory modalities. During ontogeny of these maps, one modality typically acts as the dominant system the other modalities are aligned to. A well studied model for the alignment of sensory maps is the calibration of the auditory space map by the visual sy...
متن کاملRegistration of neural maps through value-dependent learning: modeling the alignment of auditory and visual maps in the barn owl's optic tectum.
In the optic tectum (OT) of the barn owl, visual and auditory maps of space are found in close alignment with each other. Experiments in which such alignment has been disrupted have shown a considerable degree of plasticity in the auditory map. The external nucleus of the inferior colliculus (ICx), an auditory center that projects massively to the tectum, is the main site of plasticity; however...
متن کاملReinforcement Learning Predicts the Site of Plasticity for Auditory Remapping in the Barn Owl
The auditory system of the barn owl contains several spatial maps . In young barn owls raised with optical prisms over their eyes, these auditory maps are shifted to stay in register with the visual map, suggesting that the visual input imposes a frame of reference on the auditory maps. However, the optic tectum, the first site of convergence of visual with auditory information, is not the site...
متن کاملExperience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl.
The optic tectum (homolog of the superior colliculus) contains mutually aligned neural maps of auditory and visual space. During development, the organization of the auditory map is guided by spatial information provided by vision: barn owls raised wearing prismatic spectacles, which optically shift the visual field and the visual map in the optic tectum, develop an auditory map that is shifted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 10 شماره
صفحات -
تاریخ انتشار 1998